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(I.I) 

where 

(1.2) 

A B S T R A C T  

Inversion and convergence results are achieved for some convolution trans- 
forms whose kernel's bilateral Laplace transform is [1-I~ffil (1--(s2/a~))] -l 
where ak are complex. 

The convolution transform 

f ( x )  = f : ~  G(x - t)ck(t)dt 

e-"G(t)dt = (1 - s Zla~k) ----- [F(s ) ] - '  
• oo k = t  

and Z la k 1-2 < oo was treated by J. Dauns and D. V. Widder [1] and the author 
[2] when I arg a~ I =< ~ < re/2. It was remarked that for some special sequences 
{ak} for which =/4<larga  I < ~ / 2  the transforms satisfying (1.1) and (1.2) 
exist but the hardships in finding an inversion formula of  Hirschman-Widder 
type are obvious since 

f° I f ° l  lira P2m(D)G(t d t=  lim Gzm(t d t =  oo 
r a  - ~  o o  e l  - -  o o  m - ~  O o  eJ - -  o O  

f i  (see remarks by J. Datms and 
d where P2m(D) = (1 - ak2D z) and D = 

k = l  

D. V. Widder [1, p. 442]). 

We shall treat a rather large class in this paper that will contain those mentioned 
in [1, Section 5]; we shall use a modification of an inversion formula by C. 
Standish, that was proved only for a subclass of  the variation diminishing trans- 
forms, instead of  that used by [1]. 

As is usually done, we define the class of convolution transforms by restrictions 
on the sequences {ak}. 

Class C(p). A transform belongs to class C(p) if: 
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(1) For some real 2 and p, 2 > 0, 0 < p < 1 the relation N(x),,~ 2xPx ~ oo 
holds, where N(x) is the number of ak satisfying l ak ]2 < X; 

(2) [ a r g a k [ < ¢  where ~ ,<n]2  for 0 < p <  ½and ~b<n[4p for½ < p < l .  
The inversion formula achieved is 

(1.3) lira ~ F(iu)exp[ - -  t u  2 + i t l ( X  - -  ~)]du = •(x) a.e. 
t-*O+ - -8 

vo~ convenience we shall a~ume 0 < l a~ I --< l a~+, I" 
2. Preliminary estimates of F(s) a n d  G(t). To find a lower estimate for F(s) 

we shall prove first the following lemma. 

LI~MI~IA 2.1. Let I arg a I -< ¢ < 7r/2, 0 < A < 1, then 

(2.1) ll-z~/a~[~_l-2 cos(1 - A)2 ( -~-  ~ + 

I (;o) uniformly for  z satisfying rain argz - T < A . 
n = l , 3  

Proof. Let z = re t°, a = [ale ~, then 

I1 - z2/a~ 12 

=l-2-~cosZ(0-~)+-[5-~_-_1-2]-~l~cos2(l-A) - 0  + lal--~. 
Q.E.D. 

The following part of  the well known Theorem by Titchmarch will be important 
for the estimation of F(s). 

THEOREM A (Titchmarsh). Suppose f ( z )  = I'I~°=t ( 1 -  Z/ak), where 
0 < a k ~ ak+ 1 for  all k and E ~  1 < oo; let 2, p and 0 be f ixed real numbers 
satisfying 2 > 0, 0 < p < 1 and [ O[ < ~. 

Then n(x) ~ 2x p x ~ oo implies 

(2.2) log I f ( xe  ~°) I "~ ~ cosec np cos Opx x ~ 0o 

where n(x) = max {klak < x}. 

Proof. See for example [5, p. 79]. 

TI~OREM 2.2. Let the sequence {ak} satisfy the condition of  class C(p), then 
for  some K > 0 and M > 0 

(2.3) [ F(z)[ __> K e  u['12° 

un i f ° rmly f ° r  min { a r g z -  n - ~ i < q = - - m i n ( 4  O r e  ~ )  
. = 1 , 3  - 2 '  8 p  " 
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Proof. By I_zmma 2.1 we have 

[z[2 ( 2 )  r4 I F(z)l = I k=l~" ( 1 -  z:/a~)l ~ > ~=,-- 1 -  2T=--wcos2(1 - i , k l  A) - ~b + ' akl--------i" I I 

It is clear that r />  0 and we can choose A, 0 < A < 1, such that r /=  A(n/2 - ~) 
and therefore 2 ( 1 - A )  ( u / 2 - ¢ ) = 2 ( n / 2 - ~ b ) - 2 ~ / = 2 f l > 0  and also 
(n - 2~)p = (2~b + 2~/)p < n/2 (by distinguishing 0 < p < ½ and ½ < p < 1 and 
recalling that in case ½ < p, ¢ < rc/4p). 

Therefore we have 

>= ) 
-- ei(,~- 2#)) / 

Using Titchmarsh's theorem on f ( z )  we obtain (since c o s e c n p > 0  and 
cos (n - 2fl)p > 0 (for n - 2fl)p < re/2)) I f (Re t~"-2~) )[ >= KeMRP and therefore 
[ F(z) [ > Ke Ml"12° for z in the prescribed angle. 

Q.E.D. 

THEOREM 2.3. Suppose the sequence {ak} satisfies condition C(p), then for 
F(s) = I I ~  (1 - s 2/a2) we have: 

(a) G(t) 1 f~o = e st (F(s)) -1 ds converges. 

(b) ( - 1)' G( - t) = G(t) = ~7\~ lPi ( t )e - 'Ok( ' )  +O(e  -~') t--* oo 

where Reak( 0 = min I Reak[ and pi(t) are polynomials of order It i where pz + 1 
is the number of times ak(i) appears in {ak} • (ak( o ~ as(j) if i ~ j). 

(c) F(s)- t = f?oo e-StG(t)dt. 

Proof. The proof  of (a) follows immediately from Theorem 2.2. A common 
technique (see [4, p. 108]) yields (b) but we have to use the estimation of Theorem 
2.2 to show that I + i )1-1 = o<I I -°)  I sl -" (which is readily established). 
Conclusion (c) is immediate once (b) is proved. It would be perhaps worthwhile 
to note that J. Dauns and D. V. Widder in a similar theorem [1, p. 432] had not 
noticed the possibility of  many, though finite, different a~(~) with the same real part. 

Q.E.D. 

3. The inversion result. For the inversion result we shall prove the following 
1.emma. 
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L~maA 3.1. Suppose: 

(1) f ( x )  = f oo G(x - t)q~(t)dt is a transform of class C(p). 
~ l  - -  O0 

(2) ~(t) e LI(A, B) for every A, B such that - oo < A < B < co. 

I:o (3) r]~(v)do N_ Ke ~1'1 where M < min] Re as ] - ~ .  

Then 

Israel J. Math., 

e 'B2 exp B(x - 0 

K z  e ta2 exp B(x - O.  

F(B + iu)exp [iu(x - ~ + 2tB)] 

exp( - tuZ)du 

I f (x)]  = O(el~m ) x - - ,  oo. 

£ l~ooL By Theorem 2.3, defining e(t) -- d~(v)dv, we have 

I f_~G(x- t)~(t)dt t --- f~ G'(x- t)~(t)dt l 

f: -< g IC;'(x-t) l eM'"dt<=g IG' v)leM' -°'do 
oo 

THEOREM 3.2. Suppose assumptions (1), (2) and (3) of Lemma 3.1 are satisfied 
and (4) f~[tk(x + y) - ~(x)]dy = o(h) h ~ O. Then 

' f l  (3.1) lira ~ f (Od¢ F(iu)exp [ - tu 2 + iu(x - Odu -- ~(x). 
t - ' ~ O +  • 

ProoL We first show 
1 

f ~  F(iu)exp( - tu2)exp(iu(x - O)du H(t,  x - 0 =- 

converges absolutely; this follows immediately if we prove that F(z) is an entire 
function of order less than 2. Since ak z < X < [ a~+ 1 [z for k ,,- 2x p which implies 
x ,,, (k/;t) lip k -* oo we have ]a~ ,,, (k/2)a/zpk ~ oo and therefore the exponent of 
convergence o f Z  ]ak 1-" is 2p and by Theorem 14.2.4 of  [3, p. 195] F(z) is of  order 
2p < 2. By Cauchy theorem we have for all B (positive and negative) 

1 
f~o F(B + iu) exp (t(B + iu) z exp (B + iu) (x - Odu H ( t , x -  O = 2n 

J -  oo 
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Using different values for B it is clear that for every fixed t the integral 
f~_o~H(t, x - Od~ converges absolutely. We have 

::: If/: ] ( t ,x  - Od~ = t ,x  - Oe-"(x-¢)d~ = [F( iu)exp( - tu2) ,=o  =1. 
u = 0  

Therefore it would be sufficient to show 

(3.2) lim f o o  [ f (O - ¢(x)]H( t ,x  - Od~ =- lim I(t) = 0. 
t ~ O +  ,.]-- oO t -~O+ 

Obviously the integral in (3.2)converges absolutely for any fixed t using again 
the estimate of H(t, x - 0 for different values of B. 

We have also 

(3.3) 

L :;: I(t) = H(t, x - ¢)d¢ '(¢ - v)ot(v - x)dv 

where 

~(o - x) = fS  [~(w) - ¢(x)]dw. 

By (3) of l_emma 3.1 for a fixed x, [¢(v - x)l < K(x)e ulvl and therefore by the 
method of l.emma 3.1 

f : o J  G'(~ - v)][ ~¢(v - x) l d~ <= K(x)  f : J  G'(w) le t~(Iwl +gD)dw 

= < K(x)e~tl¢l 

This implies that I(t) converges absolutely and therefore by Fubini's theorem 

(3.,;) I ( t ) =  f :  ~ ( v - x ) d v  f : o o H ( t , x - O G ' ( ~ - v ) d ~ .  

By a well known result on Fourier transforms [7, p. 255] 

f:~o H ( t ,  x - ~ ) G ' ( ~  - v ) d ~  

1 t o o  
| i u e x p ( -  t u 2 ) e x p ( i u ( x  - v ) )du  = 

2~r 
( X  - -  1)) 

- -  exp( - (x - v)z[4t). 
x /4nt2t  

Therefore we have 
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(3.5) I(t) = {f_oo + f x+~ oo - - ~-~ + fx+~}°¢( v x) ( x - v )  . l e x p ( _ ( x _ v ) 2 / 4 t ) d v  

-= l l ( t )  + 12(t) + 13(0. 
It is easily seen by I e ( v -  x)  l < K(x)  e ul~l that 11( 0 = o(1) t -  0 + and 
12(0= o(1) t ~ 0 +  for any fixed fi >0 .  Assumption (4) of our theorem yields 
I ~ ( v -  x)] < 51 v -  x I provided ] v -  x 1< 6(5); choosing 6 = 6(e) we have 

f x+6 
1 2(,)1 --< 5 I v -  x[2t -312 1----~exp(-(x-v)2/4t)dv 

J x - , xFr 4 

__< 5 - -  w 2 e x p ( -  w2/4)dw < 5 " M 

since 5 is arbitrary (3.4) yields (3.2). Q.E.D. 

4. Remarks. (1) The special case mentioned by J. Dauns and D. V. Widder 
[1, p. 442] i.e. ak = ke i~ /~ < n/2 is included in C(½) since max {k 2 ] k 2 ~ x} 
is when k ~ x 112 (k ~ oo). 

(2) In our formula only one limit appears explicitly; the limit as n~oo  that is 
explicit in Standish's formula is moved inside the inner integral. This simplifies 
the proof as well as the appearance of the inversion theorem and in many cases 
the actual inversion. 
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